Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.

Identifieur interne : 000142 ( Main/Exploration ); précédent : 000141; suivant : 000143

Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.

Auteurs : Tamar Kleinberger [Israël]

Source :

RBID : pubmed:31792953

Abstract

The adenovirus (Ad) early region 4 open reading frame 4 (E4orf4) protein is a small 14-kDa polypeptide endowed with important viral regulatory functions. Although deletion of E4orf4 does not have a major effect on Ad replication due to redundancy among many Ad proteins, E4orf4 provides several functions that improve viral replication. E4orf4 contributes to temporal regulation of virus infection by downregulating early viral gene expression and by altering splicing patterns of Ad mRNAs. It also optimizes the cellular environment for Ad replication by activating the mammalian target of rapamycin pathway to increase viral protein production and by impacting the cell cycle. In addition, E4orf4 participates in the inhibition of the host DNA damage response, promoting the ability of Ad to counteract this antiviral defense mechanism. To fulfill these functions, E4orf4 interacts with numerous cellular proteins, including the major E4orf4 partner, protein phosphatase 2A (PP2A). When expressed alone, outside the context of virus infection, E4orf4 induces an evolutionarily conserved, caspase-independent, cancer-selective cell death with many interesting characteristics. This review critically describes E4orf4's contribution to Ad infection and cancer-cell death.

DOI: 10.1002/1873-3468.13704
PubMed: 31792953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.</title>
<author>
<name sortKey="Kleinberger, Tamar" sort="Kleinberger, Tamar" uniqKey="Kleinberger T" first="Tamar" last="Kleinberger">Tamar Kleinberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology, the Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology, the Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31792953</idno>
<idno type="pmid">31792953</idno>
<idno type="doi">10.1002/1873-3468.13704</idno>
<idno type="wicri:Area/Main/Corpus">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000151</idno>
<idno type="wicri:Area/Main/Curation">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000151</idno>
<idno type="wicri:Area/Main/Exploration">000151</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.</title>
<author>
<name sortKey="Kleinberger, Tamar" sort="Kleinberger, Tamar" uniqKey="Kleinberger T" first="Tamar" last="Kleinberger">Tamar Kleinberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology, the Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology, the Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The adenovirus (Ad) early region 4 open reading frame 4 (E4orf4) protein is a small 14-kDa polypeptide endowed with important viral regulatory functions. Although deletion of E4orf4 does not have a major effect on Ad replication due to redundancy among many Ad proteins, E4orf4 provides several functions that improve viral replication. E4orf4 contributes to temporal regulation of virus infection by downregulating early viral gene expression and by altering splicing patterns of Ad mRNAs. It also optimizes the cellular environment for Ad replication by activating the mammalian target of rapamycin pathway to increase viral protein production and by impacting the cell cycle. In addition, E4orf4 participates in the inhibition of the host DNA damage response, promoting the ability of Ad to counteract this antiviral defense mechanism. To fulfill these functions, E4orf4 interacts with numerous cellular proteins, including the major E4orf4 partner, protein phosphatase 2A (PP2A). When expressed alone, outside the context of virus infection, E4orf4 induces an evolutionarily conserved, caspase-independent, cancer-selective cell death with many interesting characteristics. This review critically describes E4orf4's contribution to Ad infection and cancer-cell death.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31792953</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>594</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.</ArticleTitle>
<Pagination>
<MedlinePgn>1891-1917</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/1873-3468.13704</ELocationID>
<Abstract>
<AbstractText>The adenovirus (Ad) early region 4 open reading frame 4 (E4orf4) protein is a small 14-kDa polypeptide endowed with important viral regulatory functions. Although deletion of E4orf4 does not have a major effect on Ad replication due to redundancy among many Ad proteins, E4orf4 provides several functions that improve viral replication. E4orf4 contributes to temporal regulation of virus infection by downregulating early viral gene expression and by altering splicing patterns of Ad mRNAs. It also optimizes the cellular environment for Ad replication by activating the mammalian target of rapamycin pathway to increase viral protein production and by impacting the cell cycle. In addition, E4orf4 participates in the inhibition of the host DNA damage response, promoting the ability of Ad to counteract this antiviral defense mechanism. To fulfill these functions, E4orf4 interacts with numerous cellular proteins, including the major E4orf4 partner, protein phosphatase 2A (PP2A). When expressed alone, outside the context of virus infection, E4orf4 induces an evolutionarily conserved, caspase-independent, cancer-selective cell death with many interesting characteristics. This review critically describes E4orf4's contribution to Ad infection and cancer-cell death.</AbstractText>
<CopyrightInformation>© 2019 Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kleinberger</LastName>
<ForeName>Tamar</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0300-8679</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology, the Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2013140</GrantID>
<Agency>United States-Israel Binational Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>261/15</GrantID>
<Agency>Israel Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>20150008</GrantID>
<Agency>Israel Cancer Association</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA damage response</Keyword>
<Keyword MajorTopicYN="N">E4orf4</Keyword>
<Keyword MajorTopicYN="N">PP2A</Keyword>
<Keyword MajorTopicYN="N">RNA splicing</Keyword>
<Keyword MajorTopicYN="N">Src</Keyword>
<Keyword MajorTopicYN="N">adenovirus</Keyword>
<Keyword MajorTopicYN="N">cancer-cell death</Keyword>
<Keyword MajorTopicYN="N">cell cycle</Keyword>
<Keyword MajorTopicYN="N">chromatin remodeling</Keyword>
<Keyword MajorTopicYN="N">virus-host cell interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31792953</ArticleId>
<ArticleId IdType="doi">10.1002/1873-3468.13704</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Zhao H, Chen M and Pettersson U (2014) A new look at adenovirus splicing. Virology 456-457, 329-341.</Citation>
</Reference>
<Reference>
<Citation>Falgout B and Ketner G (1987) Adenovirus early region 4 is required for efficient virus particle assembly. J Virol 61, 3759-3768.</Citation>
</Reference>
<Reference>
<Citation>Halbert DN, Cutt JR and Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56, 250-257.</Citation>
</Reference>
<Reference>
<Citation>Sandler AB and Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63, 624-630.</Citation>
</Reference>
<Reference>
<Citation>Weinberg DH and Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57, 833-838.</Citation>
</Reference>
<Reference>
<Citation>Weitzman MD and Ornelles DA (2005) Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 24, 7686-7696.</Citation>
</Reference>
<Reference>
<Citation>Yoder SS and Berget SM (1986) Role of adenovirus type 2 early region 4 in the early-to-late switch during productive infection. J Virol 60, 779-781.</Citation>
</Reference>
<Reference>
<Citation>Huang P and Hearing MM (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor E2F through a direct complex. Genes Dev 3, 1699-1710.</Citation>
</Reference>
<Reference>
<Citation>Bridge E and Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63, 631-638.</Citation>
</Reference>
<Reference>
<Citation>Davison AJ, Telford EA, Watson MS, McBride K and Mautner V (1993) The DNA sequence of adenovirus type 40. J Mol Biol 234, 1308-1316.</Citation>
</Reference>
<Reference>
<Citation>Huang MM and Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63, 2605-2615.</Citation>
</Reference>
<Reference>
<Citation>O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J, McCormick F and Stokoe D (2005) Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J 24, 1211-1221.</Citation>
</Reference>
<Reference>
<Citation>Miron MJ, Blanchette P, Groitl P, Dallaire F, Teodoro JG, Li S, Dobner T and Branton PE (2009) Localization and importance of the adenovirus E4orf4 protein during lytic infection. J Virol 83, 1689-1699.</Citation>
</Reference>
<Reference>
<Citation>Muller U, Kleinberger T and Shenk T (1992) Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol 66, 5867-5878.</Citation>
</Reference>
<Reference>
<Citation>Kaplan JM, Armentano D, Scaria A, Woodworth LA, Pennington SE, Wadsworth SC, Smith AE and Gregory RJ (1999) Novel role for E4 region genes in protection of adenovirus vectors from lysis by cytotoxic T lymphocytes. J Virol 73, 4489-4492.</Citation>
</Reference>
<Reference>
<Citation>Pechkovsky A, Lahav M, Bitman E, Salzberg A and Kleinberger T (2013) E4orf4 induces PP2A- and Src-dependent cell death in Drosophila melanogaster and at the same time inhibits classic apoptosis pathways. Proc Natl Acad Sci USA 110, E1724-1733.</Citation>
</Reference>
<Reference>
<Citation>Pechkovsky A, Salzberg A and Kleinberger T (2013) The adenovirus E4orf4 protein induces a unique mode of cell death while inhibiting classical apoptosis. Cell Cycle 12, 2343-2344.</Citation>
</Reference>
<Reference>
<Citation>Kornitzer D, Sharf R and Kleinberger T (2001) Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in S. cerevisiae and interacts with the anaphase promoting complex/cyclosome. J Cell Biol 154, 331-344.</Citation>
</Reference>
<Reference>
<Citation>Lavoie JN, Nguyen M, Marcellus RC, Branton PE and Shore GC (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 140, 637-645.</Citation>
</Reference>
<Reference>
<Citation>Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G and Branton PE (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 72, 7144-7153.</Citation>
</Reference>
<Reference>
<Citation>Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H and Branton PE (2001) Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20, 5279-5290.</Citation>
</Reference>
<Reference>
<Citation>Shtrichman R and Kleinberger T (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72, 2975-2982.</Citation>
</Reference>
<Reference>
<Citation>Galluzzi L, Brenner C, Morselli E, Touat Z and Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4, e1000018.</Citation>
</Reference>
<Reference>
<Citation>Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D and Branton PE (2000) Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol 74, 7869-7877.</Citation>
</Reference>
<Reference>
<Citation>Miron MJ, Gallouzi IE, Lavoie JN and Branton PE (2004) Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene 23, 7458-7468.</Citation>
</Reference>
<Reference>
<Citation>Xu D and Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80, 1715-1735.</Citation>
</Reference>
<Reference>
<Citation>Horowitz B, Sharf R, Avital-Shacham M, Pechkovsky A and Kleinberger T (2013) Structure- and modeling-based identification of the adenovirus E4orf4 binding site in the protein phosphatase 2A B55alpha subunit. J Biol Chem 288, 13718-13727.</Citation>
</Reference>
<Reference>
<Citation>Shtrichman R, Sharf R, Barr H, Dobner T and Kleinberger T (1999) Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA 96, 10080-10085.</Citation>
</Reference>
<Reference>
<Citation>Nebenzahl-Sharon K, Shalata H, Sharf R, Amer J, Khoury-Haddad H, Sohn SY, Ayoub N, Hearing P and Kleinberger T (2019) Biphasic functional interaction between the adenovirus E4orf4 protein and DNA-PK. J Virol 93, e01365-18.</Citation>
</Reference>
<Reference>
<Citation>Ben-Israel H, Sharf R, Rechavi G and Kleinberger T (2008) Adenovirus E4orf4 protein downregulates MYC expression through interaction with the PP2A-B55 subunit. J Virol 82, 9381-9388.</Citation>
</Reference>
<Reference>
<Citation>Gingras MC, Champagne C, Roy M and Lavoie JN (2002) Cytoplasmic death signal triggered by SRC-mediated phosphorylation of the adenovirus E4orf4 protein. Mol Cell Biol 22, 41-56.</Citation>
</Reference>
<Reference>
<Citation>Lavoie JN, Champagne C, Gingras M-C and Robert A (2000) Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J Cell Biol 150, 1037-1055.</Citation>
</Reference>
<Reference>
<Citation>Robert A, Miron MJ, Champagne C, Gingras MC, Branton PE and Lavoie JN (2002) Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 158, 519-528.</Citation>
</Reference>
<Reference>
<Citation>King CR, Zhang A, Tessier TM, Gameiro SF and Mymryk JS (2018) Hacking the cell: network intrusion and exploitation by adenovirus E1A. MBio 9, e00390-18.</Citation>
</Reference>
<Reference>
<Citation>Muller U, Roberts MP, Engel DA, Doerfler W and Shenk T (1989) Induction of transcription factor AP-1 by adenovirus E1A protein and cAMP. Genes Dev 3, 1991-2002.</Citation>
</Reference>
<Reference>
<Citation>Kleinberger T and Shenk T (1993) Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol 67, 7556-7560.</Citation>
</Reference>
<Reference>
<Citation>Lohr K, Hartmann O, Schafer H and Dobbelstein M (2003) Mutual interference of adenovirus infection and myc expression. J Virol 77, 7936-7944.</Citation>
</Reference>
<Reference>
<Citation>Bondesson M, Ohman K, Mannervik M, Fan S and Akusjarvi G (1996) Adenovirus E4 open reading 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J Virol 70, 3844-3851.</Citation>
</Reference>
<Reference>
<Citation>Whalen SG, Marcellus RC, Whalen A, Ahn NG, Ricciardi RP and Branton PE (1997) Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J Virol 71, 3545-3553.</Citation>
</Reference>
<Reference>
<Citation>Mannervik M, Fan S, Strom AC, Helin K and Akusjarvi G (1999) Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein. Virology 256, 313-321.</Citation>
</Reference>
<Reference>
<Citation>Brestovitsky A, Sharf R, Mittelman K and Kleinberger T (2011) The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res 39, 6414-6427.</Citation>
</Reference>
<Reference>
<Citation>Scacchetti A, Brueckner L, Jain D, Schauer T, Zhang X, Schnorrer F, van Steensel B, Straub T and Becker PB (2018) CHRAC/ACF contribute to the repressive ground state of chromatin. Life Sci Alliance 1, e201800024.</Citation>
</Reference>
<Reference>
<Citation>Watanabe R, Kanno SI, Mohammadi Roushandeh A, Ui A and Yasui A (2017) Nucleosome remodelling, DNA repair and transcriptional regulation build negative feedback loops in cancer and cellular ageing. Philos Trans R Soc Lond B Biol Sci 372, 20160473.</Citation>
</Reference>
<Reference>
<Citation>Higashino F, Aoyagi M, Takahashi A, Ishino M, Taoka M, Isobe T, Kobayashi M, Totsuka Y, Kohgo T and Shindoh M (2005) Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism. J Cell Biol 170, 15-20.</Citation>
</Reference>
<Reference>
<Citation>Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, McCormick F, Graeber TG and Christofk HR (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19, 694-701.</Citation>
</Reference>
<Reference>
<Citation>Li LH, Nerlov C, Prendergast G, MacGregor D and Ziff EB (1994) c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 13, 4070-4079.</Citation>
</Reference>
<Reference>
<Citation>Bridge E, Medghalchi S, Ubol S, Leesong M and Ketner G (1993) Adenovirus early region 4 and viral DNA synthesis. Virology 193, 794-801.</Citation>
</Reference>
<Reference>
<Citation>Medghalchi S, Padmanabhan R and Ketner G (1997) Early region 4 modulates adenovirus DNA replication by two genetically separable mechanisms. Virology 236, 8-17.</Citation>
</Reference>
<Reference>
<Citation>Biasiotto R and Akusjarvi G (2015) Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci 16, 2893-2912.</Citation>
</Reference>
<Reference>
<Citation>Kanopka A, Muhlemann O and Akusjarvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381, 535-538.</Citation>
</Reference>
<Reference>
<Citation>Estmer Nilsson C, Petersen-Mahrt S, Durot C, Shtrichman R, Krainer AR, Kleinberger T and Akusjarvi G (2001) The adenovirus E4-ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins. EMBO J 20, 864-871.</Citation>
</Reference>
<Reference>
<Citation>Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C and Akusjarvi G (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393, 185-187.</Citation>
</Reference>
<Reference>
<Citation>Mui MZ, Kucharski M, Miron MJ, Hur WS, Berghuis AM, Blanchette P and Branton PE (2013) Identification of the adenovirus E4orf4 protein binding site on the B55alpha and Cdc55 regulatory subunits of PP2A: implications for PP2A function, tumor cell killing and viral replication. PLoS Pathog 9, e1003742.</Citation>
</Reference>
<Reference>
<Citation>Somberg M, Rush M, Fay J, Ryan F, Lambkin H, Akusjarvi G and Schwartz S (2009) Adenovirus E4orf4 induces HPV-16 late L1 mRNA production. Virology 383, 279-290.</Citation>
</Reference>
<Reference>
<Citation>Tormanen H, Backstrom E, Carlsson A and Akusjarvi G (2006) L4-33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem 281, 36510-36517.</Citation>
</Reference>
<Reference>
<Citation>Tormanen Persson H, Aksaas AK, Kvissel AK, Punga T, Engstrom A, Skalhegg BS and Akusjarvi G (2012) Two cellular protein kinases, DNA-PK and PKA, phosphorylate the adenoviral L4-33K protein and have opposite effects on L1 alternative RNA splicing. PLoS ONE 7, e31871.</Citation>
</Reference>
<Reference>
<Citation>O'Shea CC, Choi S, McCormick F and Stokoe D (2005) Adenovirus overrides cellular checkpoints for protein translation. Cell cycle 4, 883-888.</Citation>
</Reference>
<Reference>
<Citation>Saxton RA and Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976.</Citation>
</Reference>
<Reference>
<Citation>Mossmann D, Park S and Hall MN (2018) mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev 18, 744-757.</Citation>
</Reference>
<Reference>
<Citation>Ben-Israel H and Kleinberger T (2002) Adenovirus and cell cycle control. Front Biosci 7, d1369-1395.</Citation>
</Reference>
<Reference>
<Citation>Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644-656.</Citation>
</Reference>
<Reference>
<Citation>Yamano H (2019) APC/C: current understanding and future perspectives. F1000Res 8, 725.</Citation>
</Reference>
<Reference>
<Citation>Mui MZ, Roopchand DE, Gentry MS, Hallberg RL, Vogel J and Branton PE (2010) Adenovirus protein E4orf4 induces premature APCCdc20 activation in Saccharomyces cerevisiae by a protein phosphatase 2A-dependent mechanism. J Virol 84, 4798-4809.</Citation>
</Reference>
<Reference>
<Citation>Moshe Y, Bar-On O, Ganoth D and Hershko A (2011) Regulation of the action of early mitotic inhibitor 1 on the anaphase-promoting complex/cyclosome by cyclin-dependent kinases. J Biol Chem 286, 16647-16657.</Citation>
</Reference>
<Reference>
<Citation>Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L and Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4, 799-812.</Citation>
</Reference>
<Reference>
<Citation>Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD and Jackson PK (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4, 813-826.</Citation>
</Reference>
<Reference>
<Citation>Cabon L, Sriskandarajah N, Mui MZ, Teodoro JG, Blanchette P and Branton PE (2013) Adenovirus E4orf4 protein-induced death of p53-/- H1299 human cancer cells follows a G1 arrest of both tetraploid and diploid cells due to a failure to initiate DNA synthesis. J Virol 87, 13168-13178.</Citation>
</Reference>
<Reference>
<Citation>Koren R, Rainis L and Kleinberger T (2004) The scaffolding A/Tpd3 subunit and high phosphatase activity are dispensable for Cdc55 function in the Saccharomyces cerevisiae spindle checkpoint and in cytokinesis. J Biol Chem 279, 48598-48606.</Citation>
</Reference>
<Reference>
<Citation>Sriskandarajah N, Blanchette P, Kucharski TJ, Teodoro J and Branton PE (2015) Analysis by live imaging of effects of the adenovirus E4orf4 protein on passage through mitosis of H1299 tumor cells. J Virol 89, 4685-4689.</Citation>
</Reference>
<Reference>
<Citation>Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R and Agell N (2016) New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res 44, 4745-4762.</Citation>
</Reference>
<Reference>
<Citation>Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G and Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32, 627-632.</Citation>
</Reference>
<Reference>
<Citation>Begemann M, Kashimawo SA, Lunn RM, Delohery T, Choi YJ, Kim S, Heitjan DF, Santella RM, Schiff PB, Bruce JN et al. (1998) Growth inhibition induced by Ro 31-8220 and calphostin C in human glioblastoma cell lines is associated with apoptosis and inhibition of CDC2 kinase. Anticancer Res 18, 3139-3152.</Citation>
</Reference>
<Reference>
<Citation>Sun B, Cai Y, Li Y, Li J, Liu K and Yang Y (2013) The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells. Virology 440, 75-83.</Citation>
</Reference>
<Reference>
<Citation>Zhang D, Yang R, Wang S and Dong Z (2014) Paclitaxel: new uses for an old drug. Drug Des Devel Ther 8, 279-284.</Citation>
</Reference>
<Reference>
<Citation>Zhou B-B, Li H, Yuan J and Kirschner MW (1998) Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci USA 95, 6785-6790.</Citation>
</Reference>
<Reference>
<Citation>Andersen JL, DeHart JL, Zimmerman ES, Ardon O, Kim B, Jacquot G, Benichou S and Planelles V (2006) HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2, e127.</Citation>
</Reference>
<Reference>
<Citation>Blagosklonny MV (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6, 70-74.</Citation>
</Reference>
<Reference>
<Citation>Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R and Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-2837.</Citation>
</Reference>
<Reference>
<Citation>Li S, Szymborski A, Miron MJ, Marcellus R, Binda O, Lavoie JN and Branton PE (2009) The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells. Oncogene 28, 390-400.</Citation>
</Reference>
<Reference>
<Citation>Davy C and Doorbar J (2007) G2/M cell cycle arrest in the life cycle of viruses. Virology 368, 219-226.</Citation>
</Reference>
<Reference>
<Citation>Wersto RP, Rosenthal ER, Seth PK, Eissa NT and Donahue RE (1998) Recombinant, replication-defective adenovirus gene transfer vectors induce cell cycle dysregulation and inappropriate expression of cyclin proteins. J Virol 72, 9491-9502.</Citation>
</Reference>
<Reference>
<Citation>Bressy C, Droby GN, Maldonado BD, Steuerwald N and Grdzelishvili VZ (2019) Cell cycle arrest in G2/M phase enhances replication of interferon-sensitive cytoplasmic RNA viruses via inhibition of antiviral gene expression. J Virol 93, e01885-18.</Citation>
</Reference>
<Reference>
<Citation>Bartek J and Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13, 738-747.</Citation>
</Reference>
<Reference>
<Citation>Blackford AN and Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66, 801-817.</Citation>
</Reference>
<Reference>
<Citation>Lanz MC, Dibitetto D and Smolka MB (2019) DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 38, e101801.</Citation>
</Reference>
<Reference>
<Citation>Zhou BB and Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439.</Citation>
</Reference>
<Reference>
<Citation>Gibson BA and Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13, 411-424.</Citation>
</Reference>
<Reference>
<Citation>Rouleau M, Patel A, Hendzel MJ, Kaufmann SH and Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev 10, 293-301.</Citation>
</Reference>
<Reference>
<Citation>Davis AJ, Chen BP and Chen DJ (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 17, 21-29.</Citation>
</Reference>
<Reference>
<Citation>Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV and Weitzman MD (2003) The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22, 6610-6620.</Citation>
</Reference>
<Reference>
<Citation>Lavin MF (2007) ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26, 7749-7758.</Citation>
</Reference>
<Reference>
<Citation>Lukas C, Falck J, Bartkova J, Bartek J and Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5, 255-260.</Citation>
</Reference>
<Reference>
<Citation>Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L and Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22, 5612-5621.</Citation>
</Reference>
<Reference>
<Citation>Ciccia A and Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40, 179-204.</Citation>
</Reference>
<Reference>
<Citation>Polo SE and Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25, 409-433.</Citation>
</Reference>
<Reference>
<Citation>Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R and Shiloh Y (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3, rs3.</Citation>
</Reference>
<Reference>
<Citation>Hollingworth R and Grand RJ (2015) Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 7, 2542-2591.</Citation>
</Reference>
<Reference>
<Citation>Fortunato EA and Spector DH (2003) Viral induction of site-specific chromosome damage. Rev Med Virol 13, 21-37.</Citation>
</Reference>
<Reference>
<Citation>Boyer J, Rohleder K and Ketner G (1999) Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263, 307-312.</Citation>
</Reference>
<Reference>
<Citation>Stracker TH, Carson CT and Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348-352.</Citation>
</Reference>
<Reference>
<Citation>Weiden MD and Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91, 153-157.</Citation>
</Reference>
<Reference>
<Citation>Weitzman MD, Lilley CE and Chaurushiya MS (2010) Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 64, 61-81.</Citation>
</Reference>
<Reference>
<Citation>Lilley CE, Schwartz RA and Weitzman MD (2007) Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15, 119-126.</Citation>
</Reference>
<Reference>
<Citation>Dahl J, You J and Benjamin TL (2005) Induction and utilization of an ATM signaling pathway by polyomavirus. J Virol 79, 13007-13017.</Citation>
</Reference>
<Reference>
<Citation>Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T, Sugaya Y, Isomura H, Nishiyama Y and Tsurumi T (2005) Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280, 8156-8163.</Citation>
</Reference>
<Reference>
<Citation>Nichols GJ, Schaack J and Ornelles DA (2009) Widespread phosphorylation of histone H2AX by species C adenovirus infection requires viral DNA replication. J Virol 83, 5987-5998.</Citation>
</Reference>
<Reference>
<Citation>Turnell AS and Grand RJ (2012) DNA viruses and the cellular DNA-damage response. J Gen Virol 93, 2076-2097.</Citation>
</Reference>
<Reference>
<Citation>Harada JN, Shevchenko A, Pallas DC and Berk AJ (2002) Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76, 9194-9206.</Citation>
</Reference>
<Reference>
<Citation>Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW and Branton PE (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15, 3104-3117.</Citation>
</Reference>
<Reference>
<Citation>Forrester NA, Sedgwick GG, Thomas A, Blackford AN, Speiseder T, Dobner T, Byrd PJ, Stewart GS, Turnell AS and Grand RJ (2011) Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J Virol 85, 2201-2211.</Citation>
</Reference>
<Reference>
<Citation>Chalabi Hagkarim N, Ryan EL, Byrd PJ, Hollingworth R, Shimwell NJ, Agathanggelou A, Vavasseur M, Kolbe V, Speiseder T, Dobner T et al. (2018) Degradation of a novel DNA damage response protein, tankyrase 1 binding protein 1, following adenovirus infection. J Virol, 92, e02034-17.</Citation>
</Reference>
<Reference>
<Citation>Schreiner S, Wimmer P and Dobner T (2012) Adenovirus degradation of cellular proteins. Future Microbiol 7, 211-225.</Citation>
</Reference>
<Reference>
<Citation>Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S, Araujo FD, Lakdawala SS, Lilley CE, Bartek J, Lukas J et al. (2009) Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J 28, 652-662.</Citation>
</Reference>
<Reference>
<Citation>Lombard DB and Guarente L (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60, 2331-2334.</Citation>
</Reference>
<Reference>
<Citation>Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjarvi G, Carmo-Fonseca M and Dejean A (1995) Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131, 45-56.</Citation>
</Reference>
<Reference>
<Citation>Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM and Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10, 196-207.</Citation>
</Reference>
<Reference>
<Citation>Leppard KN and Everett RD (1999) The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80 (Pt 4), 997-1008.</Citation>
</Reference>
<Reference>
<Citation>Karen KA and Hearing P (2011) Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J Virol 85, 4135-4142.</Citation>
</Reference>
<Reference>
<Citation>Blackford AN, Bruton RK, Dirlik O, Stewart GS, Taylor AM, Dobner T, Grand RJ and Turnell AS (2008) A role for E1B-AP5 in ATR signaling pathways during adenovirus infection. J Virol 82, 7640-7652.</Citation>
</Reference>
<Reference>
<Citation>Shah GA and O'Shea CC (2015) Viral and cellular genomes activate distinct DNA damage responses. Cell 162, 987-1002.</Citation>
</Reference>
<Reference>
<Citation>Brestovitsky A, Nebenzahl-Sharon K, Kechker P, Sharf R and Kleinberger T (2016) The adenovirus E4orf4 protein provides a novel mechanism for inhibition of the DNA damage response. PLoS Pathog 12, e1005420.</Citation>
</Reference>
<Reference>
<Citation>Nebenzahl-Sharon K, Sharf R, Amer J, Shalata H, Khoury-Haddad H, Sohn SY, Ayoub N, Hearing P and Kleinberger T (2019) An interaction with PARP-1 and inhibition of parylation contribute to attenuation of DNA damage signaling by the adenovirus E4orf4 protein. J Virol, 93, pii: e02253-18.</Citation>
</Reference>
<Reference>
<Citation>Gautam D and Bridge E (2013) The kinase activity of ataxia-telangiectasia mutated interferes with adenovirus E4 mutant DNA replication. J Virol 87, 8687-8696.</Citation>
</Reference>
<Reference>
<Citation>Livne A, Shtrichman R and Kleinberger T (2001) Caspase activation by adenovirus E4orf4 protein is cell line-specific and is mediated by the death receptor pathway. J Virol 75, 789-798.</Citation>
</Reference>
<Reference>
<Citation>Champagne C, Landry MC, Gingras MC and Lavoie JN (2004) Activation of adenovirus type 2 early region 4 ORF4 cytoplasmic death function by direct binding to Src kinase domain. J Biol Chem 279, 25905-25915.</Citation>
</Reference>
<Reference>
<Citation>Li S, Brignole C, Marcellus R, Thirlwell S, Binda O, McQuoid MJ, Ashby D, Chan H, Zhang Z, Miron MJ et al. (2009) The adenovirus E4orf4 protein induces G2/M arrest and cell death by blocking PP2A activity regulated by the B55 subunit. J Virol 83, 8340-8352.</Citation>
</Reference>
<Reference>
<Citation>Mui MZ, Zhou Y, Blanchette P, Chughtai N, Knight JF, Gruosso T, Papadakis AI, Huang S, Park M, Gingras AC et al. (2015) The Human adenovirus type 5 E4orf4 protein targets two phosphatase regulators of the hippo signaling pathway. J Virol 89, 8855-8870.</Citation>
</Reference>
<Reference>
<Citation>Shreberk-Shaked M and Oren M (2019) New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? Mol Oncol 13, 1335-1341.</Citation>
</Reference>
<Reference>
<Citation>Lu Y, Kucharski TJ, Gamache I, Blanchette P, Branton PE and Teodoro JG (2014) Interaction of Adenovirus type 5 E4orf4 with the nuclear pore subunit Nup205 is required for proper viral gene expression. J Virol 88, 13249-13259</Citation>
</Reference>
<Reference>
<Citation>Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V et al. (2019) U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol 21, 640-650.</Citation>
</Reference>
<Reference>
<Citation>Lavoie JN, Landry MC, Faure RL and Champagne C (2010) Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 22, 1604-1614.</Citation>
</Reference>
<Reference>
<Citation>Robert A, Smadja-Lamere N, Landry MC, Champagne C, Petrie R, Lamarche-Vane N, Hosoya H and Lavoie JN (2006) Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly. Mol Biol Cell 17, 3329-3344.</Citation>
</Reference>
<Reference>
<Citation>Smadja-Lamere N, Boulanger MC, Champagne C, Branton PE and Lavoie JN (2008) JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4. J Biol Chem 283, 34352-34364.</Citation>
</Reference>
<Reference>
<Citation>Landry MC, Sicotte A, Champagne C and Lavoie JN (2009) Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a. Mol Biol Cell 20, 4091-4106.</Citation>
</Reference>
<Reference>
<Citation>Landry MC, Champagne C, Boulanger MC, Jette A, Fuchs M, Dziengelewski C and Lavoie JN (2014) A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 289, 2230-2249.</Citation>
</Reference>
<Reference>
<Citation>Meng Z, Moroishi T and Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17.</Citation>
</Reference>
<Reference>
<Citation>Maoz T, Koren R, Ben-Ari I and Kleinberger T (2005) YND1 interacts with CDC55 and is a novel mediator of E4orf4-induced toxicity. J Biol Chem 280, 41270-41277.</Citation>
</Reference>
<Reference>
<Citation>Robson SC, Sevigny J and Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2, 409-430.</Citation>
</Reference>
<Reference>
<Citation>Knowles AF (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7, 21-45.</Citation>
</Reference>
<Reference>
<Citation>Zhong X and Guidotti G (1999) A yeast Golgi E-type ATPase with an unusual membrane topology. J Biol Chem 274, 32704-32711.</Citation>
</Reference>
<Reference>
<Citation>Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52, 44-56.</Citation>
</Reference>
<Reference>
<Citation>Avital-Shacham M, Sharf R and Kleinberger T (2014) NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death. J Virol 88, 6318-6328.</Citation>
</Reference>
<Reference>
<Citation>Mittelman K, Ziv K, Maoz T and Kleinberger T (2010) The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae. PLoS ONE 5, e15539.</Citation>
</Reference>
<Reference>
<Citation>Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS and Fields S (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA 102, 12123-12128.</Citation>
</Reference>
<Reference>
<Citation>Branton PE and Roopchand DE (2001) The role of adenovirus E4orf4 protein in viral replication and cell killing. Oncogene 20, 7855-7865.</Citation>
</Reference>
<Reference>
<Citation>Rosen H, Sharf R, Pechkovsky A, Salzberg A and Kleinberger T (2019) Selective elimination of cancer cells by the adenovirus E4orf4 protein in a Drosophila cancer model: a new paradigm for cancer therapy. Cell Death Dis 10, 455-468.</Citation>
</Reference>
<Reference>
<Citation>Lambrecht C, Haesen D, Sents W, Ivanova E and Janssens V (2013) Structure, regulation, and pharmacological modulation of PP2A phosphatases. Methods Mol Biol 1053, 283-305.</Citation>
</Reference>
<Reference>
<Citation>Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB and Narla G (2016) All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 283, 1004-1024.</Citation>
</Reference>
<Reference>
<Citation>Sents W, Ivanova E, Lambrecht C, Haesen D and Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280, 644-661.</Citation>
</Reference>
<Reference>
<Citation>Janssens V, Longin S and Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33, 113-121.</Citation>
</Reference>
<Reference>
<Citation>Grinthal A, Adamovic I, Weiner B, Karplus M and Kleckner N (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci USA 107, 2467-2472.</Citation>
</Reference>
<Reference>
<Citation>Xu Y, Chen Y, Zhang P, Jeffrey PD and Shi Y (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol cell 31, 873-885.</Citation>
</Reference>
<Reference>
<Citation>McClinch K, Avelar RA, Callejas D, Izadmehr S, Wiredja D, Perl A, Sangodkar J, Kastrinsky DB, Schlatzer D, Cooper M et al. (2018) Small-molecule activators of protein phosphatase 2A for the treatment of castration-resistant prostate cancer. Cancer Res 78, 2065-2080.</Citation>
</Reference>
<Reference>
<Citation>Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky DB, Zaware N, Izadmehr S, Mazhar S, Wiredja DD, O'Connor CM et al. (2017) Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. J Clin Invest 127, 2081-2090.</Citation>
</Reference>
<Reference>
<Citation>Janssens V and Rebollo A (2012) The role and therapeutic potential of Ser/Thr phosphatase PP2A in apoptotic signalling networks in human cancer cells. Curr Mol Med 12, 268-287.</Citation>
</Reference>
<Reference>
<Citation>Kalev P and Sablina AA (2011) Protein phosphatase 2A as a potential target for anticancer therapy. Anticancer Agents Med Chem 11, 38-46.</Citation>
</Reference>
<Reference>
<Citation>Guergnon J, Godet AN, Galioot A, Falanga PB, Colle JH, Cayla X and Garcia A (2011) PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. Biochim Biophys Acta 1812, 1498-1507.</Citation>
</Reference>
<Reference>
<Citation>Arroyo JD and Hahn WC (2005) Involvement of PP2A in viral and cellular transformation. Oncogene 24, 7746-7755.</Citation>
</Reference>
<Reference>
<Citation>Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL and Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167-176.</Citation>
</Reference>
<Reference>
<Citation>Walter G, Ruediger R, Slaughter C and Mumby M (1990) Association of protein phosphatase 2A with polyoma virus medium T antigen. Proc Natl Acad Sci USA 87, 2521-2525.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Wei H, Hsieh TC and Pallas DC (2008) Cdc55p-mediated E4orf4 growth-inhibition in S. cerevisiae is mediated only in part via the catalytic subunit of PP2A. J Virol 82, 3612-3623.</Citation>
</Reference>
<Reference>
<Citation>Shtrichman R, Sharf R and Kleinberger T (2000) Adenovirus E4orf4 protein interacts with both Ba and B' subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Ba. Oncogene 19, 3757-3765.</Citation>
</Reference>
<Reference>
<Citation>Afifi R, Sharf R, Shtrichman R and Kleinberger T (2001) Selection of apoptosis-deficient adenovirus E4orf4 mutants in S. cerevisiae. J Virol 75, 4444-4447.</Citation>
</Reference>
<Reference>
<Citation>Galioot A, Godet AN, Maire V, Falanga PB, Cayla X, Baron B, England P and Garcia A (2013) Transducing properties of a pre-structured alpha-helical DPT-peptide containing a short canine adenovirus type 2 E4orf4 PP2A1-binding sequence. Biochim Biophys Acta 1830, 3578-3583.</Citation>
</Reference>
<Reference>
<Citation>Colle JH, Perichon B and Garcia A (2019) Antitumor and antibacterial properties of virally encoded cationic sequences. Biol 13, 117-126.</Citation>
</Reference>
<Reference>
<Citation>Zhang Z, Mui MZ, Chan F, Roopchand DE, Marcellus RC, Blanchette P, Li S, Berghuis AM and Branton PE (2011) Genetic analysis of B55alpha/Cdc55 protein phosphatase 2A subunits: association with the adenovirus E4orf4 protein. J Virol 85, 286-295.</Citation>
</Reference>
<Reference>
<Citation>Swingle M, Ni L and Honkanen RE (2007) Small-molecule inhibitors of Ser/Thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol 365, 23-38.</Citation>
</Reference>
<Reference>
<Citation>Katayose Y, Li M, Al-Murrani SW, Shenolikar S and Damuni Z (2000) Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), associate with and modify the substrate specificity of protein phosphatase 1. J Biol Chem 275, 9209-9214.</Citation>
</Reference>
<Reference>
<Citation>Prickett TD and Brautigan DL (2006) The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem 281, 30503-30511.</Citation>
</Reference>
<Reference>
<Citation>Bollen M, Peti W, Ragusa MJ and Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35, 450-458.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Kleinberger, Tamar" sort="Kleinberger, Tamar" uniqKey="Kleinberger T" first="Tamar" last="Kleinberger">Tamar Kleinberger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31792953
   |texte=   Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31792953" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020